
Document generated by Confluence on Apr 03, 2020 02:16 Page 1

ICEmobile : Cloud Push Overview

This page last changed on Feb 06, 2013 by steve.maryka.

Overview

User Notification

User Notification is the first aspect of cloud push that you must understand. When a user is actively
working with an application on a mobile device, the user interface (UI) of that application can continually
update information displayed to the user as the state of the application changes. For instances, an email
application can update the number of emails in the inbox as new emails arrive. When the user is not
actively using an application, that application can not rely on its UI to convey new information to the user,
because the UI is not visible at the moment. Mobile devices provide a number of ways to alert the user of
a state change occurring in an inactive application. A status bar can display an alerting icon, or a sound
or vibration can occur. For instance, an email application can display an icon indicating that new mail has
arrived since the user last viewed her inbox.

Cloud Push

When a user notification is the result of some state change coming from outside the device over a
network connection, we refer to that as Cloud Push. The dominant mobile platforms all provide Cloud
Push mechanisms that can be incorporated into an application. Specifically, the mechanisms are:

• Apple Push Notification Service
• Android Cloud To Device Messaging
• Blackberry Push Service

These mechanisms can be integrated directly with a native mobile application to achieve appropriate
user notifications triggered from the network cloud. The [ICEmobile Containers] include the integration
necessary to use device-specific cloud push mechanisms.

Beyond these proprietary push mechanisms, other common network protocols can be considered for
cloud push notification, such as:

• Email
• SMS text messaging

These mechanisms have the advantage of ubiquitous support across mobile platforms, relying on the
device's built in support for these protocols, but won't necessarily integrate tightly with the native
application. ICEmobile currently supports a generic email connector for cloud push.

Web Applications

The concept of push in web applications was completely foreign until the advent of Ajax, and more
specifically Ajax Push. Ajax Push makes pushing asynchronous state changes to a web application
possible, so an active web application can behave much like an active native application, pushing state
changes to the UI in a spontaneous fashion as the state of the application changes.

When a web application becomes inactive, not only is the UI unavailable, the network connection back
to the server is also unavailable, so Ajax Push connections cannot be maintained. In order to support
cloud push to web applications, ICEmobile-Faces augments Ajax Push with a priority push mechanism
that utilizes a cloud push connector to a native [Device Container]. Even when the web application is idle,
Ajax Push can send priority notifications over a cloud push connector to the device, and alert the user
with standard user notification mechanisms on the device.

Ajax Push

We now review the Ajax Push mechanism with respect to active and inactive web applications.

http://support.apple.com/kb/HT3576
http://code.google.com/android/c2dm/index.html(C2DM)
http://us.blackberry.com/developers/platform/pushapi.jsp
http://www.icefaces.org/main/ajax-java/ajaxpush.iface

Document generated by Confluence on Apr 03, 2020 02:16 Page 2

Push to Active Applications

When the web application is active, the Ajax Push mechanism relies on HTTP and the notification protocol
in ICEpush, which uses reverse polling over a blocking connection to facilitate asynchronous page
updates. The basic process is illustrated below.

1. Some state change in the application triggers an Ajax Push event.
2. ICEpush notification is delivered to the browser client over a dedicated ICEpush connection.
3. Notification at client browser causes a JSF Ajax request with an empty execute phase.
4. Render phase captures new state of client, and Direct-to-DOM Rendering delivers incremental page

updates to client.

Push to Inactive Applications

Once an ICEfaces page loads in the ICEmobile device container, the container notifies the ICEpush bridge,
describing the cloud push connector type/credentials associated with the client device (if there is one).
When the web application goes inactive on the device, the ICEpush bridge connection is parked on the
server for that client's session. While the connection remains parked, any priority push requests that
occur for that client will be sent via the specified cloud connector, to be received at the device container
(in the case of a platform-specific connector), or by the email client (in the case of an email connector).
In the case of the device container, the cloud push will result in a user notification carrying a specific
subject/message. The process is illustrated below.

http://www.icepush.org

Document generated by Confluence on Apr 03, 2020 02:16 Page 3

1. Cloud Push park credentials established.
2. Inactive state detected and client session parked.
3. Some state change in the application triggers a priority Ajax Push event.
4. ICEpush notification is delivered to the device using the specified cloud connector.
5. Notification received at device, and user notification is given.

At some time later the user acknowledges the notification by reactivating the application, causing the
ICEpush bridge to reestablish itself, and a page update to occur reflecting the current state of the
application.

Programming Model

While there is some relatively complex infrastructure in ICEmobile-Faces to handle cloud push, the
programming model is simple, and well-aligned with the standard ICEfaces 2 Ajax Push APIs.

A standard Ajax Push notification is generated using:

import org.icefaces.application.PushRenderer;
...

http://wiki.icefaces.org/display/ICE/Ajax+Push+-+APIs

Document generated by Confluence on Apr 03, 2020 02:16 Page 4

PushRenderer.render("myGroup");

A priority push, with option to do a cloud push is generated using:

import org.icefaces.application.PushRenderer;
import org.icefaces.application.PushMessage;
...
PushMessage myMessage = new PushMessage("myMsgSubject", "myMsgBody");
PushRenderer.render("myGroup", myMessage);

From the developers perspective, there are no additional considerations beyond supplying the additional
PushMessage. Selection of the normal or cloud push transport, as well as selection of the cloud push
connector type, is transparent to the developer and handled by the ICEpush core.

Deployment Infrastructure

Specific deployment infrastructure is required on both the server and client for cloud push to operate
correctly.

Device-specific cloud push features require ICEmobile-EE capabilities, and are not discussed
here. Email is the only cloud push connector available in ICEmobile Open Source, and is the
focus of the remainder of this tutorial.

Server Requirements

Deployments that support cloud push must include proper configuration for each cloud push mechanism
to be supported.

Email Connector

The email connector requires a SMTP server account for sending the email messages. Your web
application can be configured to login into the server with context parameters in the web.xml. The
following attributes are available to configure the email client.

Attribute Description Value Default

smtp.host host name of SMTP
server

any valid host name none

smtp.from email address of sender any valid email address none

smtp.port port number for SMTP
server

any valid port 25

smtp.user user name for SMTP
server access

any valid user name none

smtp.password password for user user password none

smtp.security type of security for
SMTP connection

NONE, SSL, TLS NONE

smtp.verify-server-
certificate

certificate verification true, false false

Document generated by Confluence on Apr 03, 2020 02:16 Page 5

Device Requirements

Email

If the email connector is used, there must be an email client configured on the device to match the email
address associated with the client. It is also necessary for the device to provide email credentials to the
web application. This can be done via the [ICEmobile Containers], or via the web application itself.

See example below for details on how to supply credentials in non-container deployments.

.
Configuring the various device containers for email-based cloud push is now described.

Android

Cloud push credentials are established using the device container preferences page as illustrated below:

To use email notification, C2DM must be deselected, as shown above, and a valid email address must be
provided in the Email Notification preference as shown below.

Document generated by Confluence on Apr 03, 2020 02:16 Page 6

iOS

To configure email notification in place of APNS, provide a notification email address in the preferences
screen as seen below:

Document generated by Confluence on Apr 03, 2020 02:16 Page 7

Blackberry

To configure the Blackberry container for email notification, go to the options page for the
ICEmobileContainer, under Options (wrench application) -> Third Party Applications -> ICEmobile
Container 1.0 GA

Check the 'Use Email Notification' checkbox and the 'Email notification address' text field will become
enabled. Enter an email address to receive email push notifications.

Save the settings on exit. The container will automatically re-register for push notifications with the new
service.

Document generated by Confluence on Apr 03, 2020 02:16 Page 8

Examples

Email Connector with Device Containers

This example provides deployment configuration for applications that use cloud push via the email
connector, and device containers to supply necessary cloud push credentials from the client. We will use
the mobileshowcase application supplied in the download bundle, and in particular the Notification page in
mobileshowcase.

Document generated by Confluence on Apr 03, 2020 02:16 Page 9

Deploying mobileshowcase

If you are using the binary bundle, then a prebuilt version of mobileshowcase.war is available in [install-
dir]/samples/dist. If you are using the source bundle, from [install-dir] execute the "ant" command
to build. When the build is complete, mobileshowcase.war will be available in [install-dir]/samples/
dist. Deploy mobileshowcase.war to your application server, in the normal fashion and ensure that the
applications is functioning.

Configure Email Connector

For Email Connector to function, you must supply valid SMTP server configuration and user credentials in
the deployed web.xml file. In this example, we will illustrate the use of the gmail SMTP server, which you
can use as well, provided that you have a valid gmail account.

Edit your web.xml to add the following configuration for SMTP.

<context-param>
 <param-name>smtp.host</param-name>
 <param-value>smtp.gmail.com</param-value>
</context-param>
<context-param>
 <param-name>smtp.from</param-name>
 <param-value>yourAccount@gmail.com</param-value>
</context-param>
<context-param>
 <param-name>smtp.port</param-name>
 <param-value>465</param-value>
</context-param>
<context-param>
 <param-name>smtp.user</param-name>
 <param-value>yourAccount@gmail.com</param-value>
</context-param>
<context-param>
 <param-name>smtp.password</param-name>
 <param-value>yourPassword</param-value>
</context-param>
<context-param>
 <param-name>smtp.security</param-name>
 <param-value>SSL</param-value>
</context-param>
<context-param>
 <param-name>smtp.verify-server-certificate</param-name>
 <param-value>false</param-value>
</context-param>

Substitute your gmail account and password as appropriate. Save the changes and restart the
application. The server log from application startup should indicate that the Email Connector has been
configured.

Jan 27, 2012 2:56:32 PM org.icepush.EmailNotificationProvider$AutoRegister contextInitialized
INFO: ICEpush Email Notification Provider Registered.

Testing your deployment

You will need a supported mobile device or simulator, and you will need the corresponding Device
Container installed and configured. See above for information on how to configure your container to
supply email credentials.

Document generated by Confluence on Apr 03, 2020 02:16 Page 10

Once the container is configured, navigate, from the container, to the URL for your test deployment, and
select the Navigation example. Here you can enter a subject and message, and set a delay for notification
delivery. You can then select either Simple or Priority Push.

The following table illustrates the expected results under various conditions.

Client Push Type Result

Active Simple Normal push with page update

Active Priority Normal push with page update

Inactive Simple No notification or push

Inactive Priority Email notification

Email Connector without Device Containers

Still to come...

